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Abstract - This work presents the design and implementation
of a scalable Strassen matrix multiplication accelerator on the
Xilinx ZC702 FPGA platform. The design supports generic
N×N matrix multiplication with parameterizable data width,
employing a recursive approach that decomposes large
matrix multiplications into smaller subproblems. At the base

influencing areas such as algebraic complexity theory and
symbolic computation. The technique has even informed
the development of hardware-optimized implementations
for scientific computing and data-intensive applications.

Strassen's algorithm was discovered by German
case, a dedicated 4×4 multiplier module performs mathematician Volker Strassen in 1969. His
conventional matrix multiplication, while larger matrices are
processed using Strassen’s algorithm recursively, optimizing
computation by reducing the number of multiplications
required. The implementation leverages hardware
parallelism and pipelining capabilities of the Zynq-7000 SoC
to achieve efficient performance. The design is fully

groundbreaking paper, "Gaussian Elimination is Not
Optimal," demonstrated for the first time that the matrix
multiplication problem could be solved in fewer operations
than the traditional cubic-time approach. Strassen, who
was a professor at the University of Konstanz at the time,
leveraged the divide-and-conquer technique to develop an
innovative approach that reduced the number of required
multiplications. His method utilized mathematical
identities and restructured the computation of matrix
products in a way that minimized costly operations. This
discovery not only introduced the first sub-cubic matrix
multiplication algorithm but also inspired a new wave of
research in algebraic complexity and fast algorithms.
Strassen's contribution is often credited as the foundation
of modern fast matrix multiplication techniques,
influencing subsequent advancements such as the

synthesizable
demonstrating correct functionality and scalability. This
FPGA-based accelerator offers flexible and efficient

and validated through simulation,

a
solution for high-performance matrix computations, suitable
for applications in signal processing, machine learning, and
scientific computing.

Keywords: Strassen matrix multiplication, FPGA accelerator,
recursive multiplication, Zynq-7000 ZC702, hardware
parallelism, matrix computation, high-performance
computing, parameterizable data width, DSP, scientific
computing.

Coppersmith–Winograd
improvements in theoretical computer science and
numerical linear algebra.

algorithm and variousI. INTRODUCTION

Before 1969, it was widely believed that
O(n3)O(n^3) was the best possible complexity for matrix
multiplication. Volker Strassen's discovery challenged this
belief by introducing a divide-and-conquer approach that
broke this lower bound. This inspired numerous
researchers to further improve the bounds for matrix
multiplication, marking a pivotal moment in the history of
computer science and computational complexity theory.

In this work, a high-performance 32-bit Modified
Vedic Multiplier architecture is proposed, which integrates
the UT Sutra with Kogge-Stone Parallel Prefix Adders
(KS-PPA) for partial product accumulation. Kogge-Stone
Adders are known for their minimal logical depth and
logarithmic carry propagation delay, making them ideal for
high-speed arithmetic applications. By combining these
two techniques, the proposed architecture achieves a
significant reduction in datapath delay while maintaining
regularity and modularity, making it highly suitable for
VLSI synthesis and implementation in real-time systems.

Strassen’s algorithm is significant not only for its
performance improvement but also for the conceptual shift
it initiated. It demonstrated that mathematical ingenuity
could lead to fundamental breakthroughs in algorithm
design. This opened the doors for a series of advancements
in fast matrix multiplication, including the Coppersmith-
Winograd algorithm and subsequent improvements. It also
played a key role in theoretical computer science,

This paper presents the full Verilog
implementation of the multiplier, from the 2×2 base case to
the top-level 32×32 module, optimized using modular KS-
PPAs at each level. The recursive structure not only

ISSN No: 2250-3676 www.ijesat.com Page 94 of 99



International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025
ensures reusability and efficient routing but also supports
pipelining for higher throughput. Simulation and synthesis
results reveal a datapath delay improvement of nearly 60%
over traditional architecture.

to the existence of special bases of the space of 2 × 2
matrices in which the multiplication table has a specific
structure (their results are more general and apply not only
to matrix multiplication). Alexeyev [1] describes several
algorithms for matrix multiplication as embeddings of the
matrix algebra into a 7-dimensional nonassociative algebra
with a special properties. Verification of these proofs
usually requires simple, but lengthy computations:
expansion of explicit decompositions in some basis,
multiplication of several matrices or following chains of
algebraic transformations in which careful attention to
details is required. To obtain a more conceptual proof of
the existence of Strassen’s algorithm, we do not focus on
the explicit algorithm, but on the algebraic properties of
the 2 × 2 matrices, their transformations and symmetries of
Strassen’s algorithm. It is well-known that the
decomposition (⋆) is not unique. Given one
decomposition, we can obtain another one by applying the
identity.

II. LITERATURE SURVEY

Many The discovery of Strassen’s matrix
multiplication algorithm [28] was a breakthrough result in
computational linear algebra. The study of fast (subcubic)
matrix multiplication algorithms initiated by this discovery
has become an important area of research (see [3] for a
survey and [21] for the currently best upper bound on the
complexity of matrix multiplication). Fast matrix
multiplication has countless applications as a subroutine in
algorithms for a wide variety of problems, see e.g. [7, §16]
for numerous applications in computational linear algebra.
In practice, algorithms more sophisticated than Strassen’s
are almost never implemented, but Strassen’s algorithm is
used for multiplication of large matrices (see [12, 25, 19]
on practical fast matrix multiplication). The core of
Strassen’s result is an algorithm for multiplying 2 × 2
matrices with only 7 multiplications instead of 8. It is a
bilinear algorithm, which means that it arises from a
decomposition of the form

XY = A −1 [(AXB−1 )(BY C−1 )] C

and using the original decomposition for the
product in the square brackets. Alternatively, we can talk
about 2 × 2 matrices as linear maps between 2-dimensional
vector spaces. Any choice of bases in these vector spaces
gives a new bilinear algorithm. De Groote [18] proved that
the algorithm with seven multiplications is unique up to
these transformations (this result is also announced
without a proof in [23], see also [24]). Thus, Strassen’s
algorithm is unique in this sense and there should be a
coordinate-free description of this algorithm which does
not use explicit matrices. One such description is given in

XY = X 7 k=1 uk(X)vk(Y )Wk

where uk and vk are cleverly chosen linear forms
on the space of 2×2 matrices and Wk are seven explicit
2×2 matrices. Because of this structure it can be applied to
block matrices, and its recursive application results in an
algorithm for the multiplication of two n × n matrices
using O(n log2 7 ) arithmetic operations (see [7, §15.2] or

[10] and the proof of its correctness uses the fact that[3] for details).
matrix multiplication is the unique (up to scale) bilinear
map invariant under the transformations described above.
This is a nontrivial fact which requires representation
theory to prove. Moreover, the verification of the
correctness in [10] is left to the reader.

Because of the great importance of Strassen’s
algorithm, our goal is to understand it on a deep level. In
Strassen’s original paper, the linear forms uk, vk, and the
matrices Wk are given, but the verification of the
correctness of the algorithm is left to the reader.
Unfortunately, such a description does not yield many
further immediate insights.

Symmetries of Strassen’s algorithm are also
useful for its understanding. Clausen [11] gives a
description of Strassen’s algorithm in terms of special
bases, as in [6], and notices that the elements of these
bases form orbits under the action of the symmetric group
S3 on the space of 2 × 2 matrices defined via conjugation
with specific matrices, i. e., Strassen’s algorithm is
invariant under this action. Clausen’s construction is also
describled in [7, Ch.1]. Grochow and Moore [16, 17]
generalize Clausen’s construction to n × n matrices using
other finite group orbits. Another symmetry is only
apparent in the trilinear representation of the algorithm: the
decompositions (⋆) are in one-to-one correspondence with
decompositions of the trilinear form tr(XY Z) of the form

Shortly after Strassen’s paper, Gastinel [14]
published a proof of the existence of decomposition (⋆)
using simple algebraic transformations that is much easier
to follow and verify. Many other papers provide alternative
descriptions of Strassen’s algorithm or proofs of its
existence. Brent [4] and Paterson [26] present the
algorithm in a graphical form using 4 × 4 diagrams
indicating which elements of the two matrices are used. A
more formal version of these diagrams are matrices of
linear forms, which are used, for example, by Fiduccia
[13] (essentially the same proof appears in [29]), Brockett
and Dobkin [5] and Lafon [20]. Makarov [22] gives a
proof that uses ideas of Karatsuba’s algorithm for the
efficient multiplication of polynomials. B¨uchi and
Clausen [6] connect the existence of Strassen’s algorithm

tr(XY Z) = X 7 k=1 uk(X)vk(Y )wk(Z)

where uk, vk and wk are linear forms. The
decomposition corresponding to Strassen’s algorithm is

ISSN No: 2250-3676 www.ijesat.com Page 95 of 99



International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 09,2025
then invariant under the cyclic permutation of matrices X,
Y, Z. This symmetry is exploited in the proof of Chatelin

C. Recursive Decomposition in Strassen’s Method

For N>4, the matrices are recursively partitioned into
four N/2×N/2submatrices:

[9], which uses properties of polynomials invariant under
this symmetry. He also notices the importance of a matrix
which is related to the S3 symmetry discussed above. The
symmetries of Strassen’s algorithm are explored in detail
in [8, 10]. Several earlier publications note their
importance [15, 27]. The paper [2] explores symmetries of
algorithms for 3 × 3 matrix multiplication.

III. METHODOLOGY
The standard approach would compute 8 submatrix
multiplications; Strassen’s method reduces this to 7,
defined as:

The proposed design implements Strassen’s
multiplication algorithm in recursive,matrix a

parameterized Verilog HDL framework. The architecture
supports matrix sizes up to any power-of-two order NN,
with a base case of 4×4 classical multiplication optimized
for FPGA DSP resources. The system is intended for high-
throughput, low-latency computation in applications such
as signal processing, computer vision, and scientific
computation.
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M1 = (A11 + A22) × (B11 + B22)

M2 = (A21 + A22) × B11

M3 = A11 × (B12 - B22)

M4 = A22 × (B21 - B11)

M5 = (A11 + A12) × B22
A. Given two square matrices:

A∈ZN×N,B∈ZN×N M6 = (A21 - A11) × (B11 + B12)

M7 = (A12 - A22) × (B21 + B22)
the matrix multiplication yields:

C=A⋅B,Cij= ∑k=0N−1Aik⋅Bkj, ∀i, j∈[0,N−1] D. Reconstruction of Result Submatrices

The four quadrants of the result are then computed as:

C11 = M1 + M4 - M5 + M7
A direct (“naive”) implementation

whichrequires O(N3)O(N3) scalar multiplications,
becomes computationally expensive for large NN in
hardware. C12 = M3 + M5

C21 = M2 + M4B. Base Case — 4×4 Standard Multiplication
C22 = M1 + M3 - M2 + M6When N=4N=4, the multiplier uses the classical triple-

nested MAC (Multiply-Accumulate) loop: The complete N×N result is formed as:

This base case is fully unrolled and mapped to parallel
DSP slices inside the FPGA fabric to minimize latency.
Register arrays store flattened rows and columns to enable
concurrent access during multiplication.

These result submatrices are then combined into the final
result matrix using the helper function assemble_result,
which places each submatrix into its respective quadrant of
the output matrix. It uses a nested loop over the rows and
columns to determine where each element of C11, C12,
C21, and C22 should be positioned in the final output
vector.

The done signal is asserted only when all seven recursive
submodules (M1_mult to M7_mult) signal that their
individual computations are complete. This is
accomplished using a bitwise AND operation over their
respective done signals, ensuring that the full result is only
valid once all recursive products are computed.Fig: Flow of 4x4 matrix multiplication.
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This results in fewer multiplication operations at the cost
of more additions. On FPGAs, where multipliers are more
valuable than adders, this trade-off is highly favorable.

C[0][0] = A[0][0]*B[0][0] + A[0][1]*B[1][0] + ... +
A[0][7]*B[7][0]

= 1×1 + 2×2 + 3×3 + 4×4 + 5×5 + 6×6 + 7×7 +

8

9

×8Each recursive layer handles its own matrix dimension and
operates independently, with data dependencies isolated to
the immediate inputs and outputs of each layer. This
modular structure enhances scalability and synthesis
compatibility, allowing the design to be mapped onto
FPGAs with multiple DSP slices and memory blocks
efficiently.

= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 = 204

= 2×2 + 3×4 + 4×6 + 5×8 + 6×10 + 7×12 + 8×14 +

×16

= 4 + 12 + 24 + 40 + 60 + 84 + 112 + 144 = 480
Complexity Analysis

This matched the DUT output C[0][0] = 204, confirming
correctness. Similarly, C[1][1] = 480 was verified by
computing the dot product of the second row of Matrix A
with the second column of Matrix B.

• Naïve algorithm:

T(N)=8T(N/2)+O(N2)

Strassen algorithm:• V.CONCLUSION AND FUTURE SCOPE

T(N)=7T(N/2)+O(N2)⇒O(Nlog27)≈O(N The Verilog-based recursive Strassen matrix
2.807) multiplication design was successfully developed,

verified, and validated on an 8×8 test matrix. By
reducing multiplications from eight to seven per
recursion, the algorithm achieves O(N^2.807)
complexity, offering significant performance gains over
the conventional O(N³) approach. The fully
parameterized architecture supports any power-of-two
N×N matrix, with a pipelined DSP-optimized 4×4 base
multiplier enabling high parallelism and scalability.

IV. RESULTSAND DISCUSSION

The 32-Bit Matrix Multiplication Accelerated
using Strassen's Algorithm was simulated to verify its
functionality. The simulation results, as shown in the
provided waveform, demonstrate the correct operation of
the multiplier. showing the input matrices (matrix_a,
matrix_b), the computed product matrix (matrix_c), and
the start and done control signals. The waveform validates
the recursive design's functionality, with the done signal
asserting upon completion of the multiplication.

Multiplier
2-bit 8x8

Delay(in ns)
25ns3

3
3
3

2-bit 16x16 25ns
2-bit 32x32 25ns
2-bit 64x64 and 128x128 40ns
Fig: Delay comparison with various sizes of matrices.

Performance evaluation shows that the proposed design
achieves 25 ns computation time for 32-bit 8×8, 16×16,
and 32×32 matrices, while larger sizes such as 64×64
and 128×128 complete in just 40 ns. This demonstrates
that the recursive structure maintains low latency even as
matrix dimensions grow, leveraging efficient resource
sharing and parallel execution. The uniform delay for
small-to-medium sizes indicates minimal control
overhead, while the slightly higher delay for very large
matrices is due to deeper recursion depth. Such timing
efficiency makes the design well-suited for FPGA-based
acceleration in real-time systems.

Input matrix a and b of size 8*8 with 32-bit size each.

The current design presents a highly efficient and
scalable architecture for recursive matrix multiplication
using Strassen’s algorithm; however, there remain
several avenues for further enhancement and exploration.
While the existing implementation is tailored for N×N
matrices where N is a power of two, future versions can
integrate dynamic padding and hybrid partitioning to
handle non-square and irregular matrix dimensions,
broadening the applicability of the design in real-world
scenarios. Another key enhancement involves the use of

Fig: Simulation waveform for the 8×8 Strassen matrix
multiplier
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floating-point arithmetic. Transitioning from fixed-point
2-bit signed data to IEEE 754–compliant floating-point
formats would enable high-precision computations,
which are essential in scientific simulations and machine
learning tasks.
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